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Solution of a molecular statistical model for 
chiral nematic liquid crystals 

by B. C .  H. KRUTZEN and G. VERTOGEN 
Institute for Theoretical Physics, Catholic University of Nijmegen, Toernooiveld, 

6525 ED Nijmegen, The Netherlands 

(Received I November 1989; accepted 29 March 1989) 

A molecular statistical model for the chiral nematic phase of liquid crystals is 
investigated. The model is treated in the molecular field approximation. The 
resulting set of coupled integral equations for the order parameters and the pitch 
determining equation are solved numerically. The model hamiltonian consists of 
a nematic and a twist producing term. If only the nematic term is present, the 
model is known to have a first order phase transition. The model containing only 
the twist producing term is shown to exhibit a second order phase transition. The 
order parameters and wave length are presented for three ratios of the coupling 
constants in the case that both interactions are present. 

1. Introduction 
The first molecular statistical model for the chiral nematic phase of liquid crystal- 

line materials was introduced by Goossens [l]. His model is a straight forward 
extension of the Maier-Saupe model for the nematic phase [2]. The origin of the chiral 
nematic phase is ascribed to the induced dipole-quadruple term of the dispersion 
interaction. This term is zero for the non-chiral molecules of the Maier-Saupe model. 

Although the fundamental assumption of this theory for the chiral nematic phase, 
i.e. the higher order terms in the multipole expansion can be neglected, does not hold, 
the model is of interest from a phenomenological point of view. It gives a clear picture 
of the type of molecular interactions that are needed to produce a chiral nematic phase. 

In order to discuss the appearance of this phase it suffices to consider molecules 
that are cylindrically symmetric around their long molecular axis and equipped with 
the property handedness representing their chirality. Then the model consists of only 
two competing interactions, namely the Maier-Saupe interaction and a twist producing 
interaction as proposed by v.d. Meer et al. [3]. Uptill now, the solutions of this model 
are known only for a relatively small twist interaction [4, 51. The purpose of this paper 
is to present numerical solutions for the full range of the parameters using the 
molecular field approximation. Furthermore, the limit case, where the Maier-Saupe 
term is absent, is discussed partly in analytical terms. 

This paper is organized in the following way. In $2, the model hamiltonian is 
introduced. The order parameters characterizing the chiral nematic phase are specified 
in $3. The expression for the Helmholtz free energy in the molecular field approxi- 
mation and the attendant parameter equations can be found in $4. One of these 
equations determines the pitch and is dealt with in $5. The numerical solution of the 
other two equations, the selfconsistent equations for the order parameters, is presented 
in $6. The limit case, including only the twist producing term, is studied numerically 
as well as analytically in $7. Finally the conclusions are presented in $8. 
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212 B. C. H. Krutzen and G. Vertogen 

2. The model hamiltonian 
First we would like to explain the choice of the model hamiltonian for the chiral 

nematic phase with the help of symmetry arguments and tensor calculus [6]. Starting 
point of our consideration is a cylindrically symmetric chiral molecule with its 
symmetry axis denoted by the unit vector a,  Since the chiral nematic phase does not 
show any polarity of the molecules, these should be represented by tensors of even 
rank composed of the components of the vector a .  A traceless second rank tensor is 

A,p = U , U ~  - id, , .  (1) 

The greek indices represent the components x ,  y and z .  A pair interaction between the 
molecules i and j can be constructed by the contraction of two of these tensors 

H(!) = - 2 J . . A  .A 
2 v 4 8  41 

= -4 ,P?(ai  - a,). ( 2 )  

The coupling constant 4, depends on the distance vector ri j  between the centres of 
mass of the molecules i and j and P2 is the second Legendre polynomial. This 
interaction is of the form found by Maier and Saupe for the induced dipole-dipole 
interaction [2]. It is well known that this model leads to a first order phase transition 
from the nematic to the isotropic phase. 

For the construction of a twist producing interaction tensor (1) must be contracted 
with an odd rank tensor. Since first rank tensors are not compatible with the absence 
of polarity, these tensors are of rank three at  least. A third rank tensor representing 
the chirality of the molecule is 

A,,, = aa&,ylrql’ (3) 

where E is the Levi-Civita tensor. The simplest twist interaction can now be obtained 
by the contraction of this tensor with A,, and the unit distance vector u 

H,‘?) = - 1 K . , A  . A  .U . .  - t K j i A E p y j & p i ~ y j i  
2 1~ nPyl ~ B J  Y J J  

= - +(K,  + Kji)(ai  * a j ) ( a i  x a,) - ui j .  (4) 

This interaction is of the same form as the induced dipole-quadrupole interaction 
following from a generalization of the Maier-Saupe approach using cylindrically 
symmetric chiral molecules [ 1,3]. 

The purpose of this paper is to present the thermodynamic properties of a system 
of identical molecules subject to both the Maier-Saupe interaction (2) and the twist 
interaction (4). The model hamiltonian is thus given by 

( 5 )  
1 
2 i + j  

H = - - (Ji jPz(ai  . a,) + Kij(ai aj)(a,  x a,) - ui,>. 

The influence of the twist producing term has previously been investigated with the 
aid of perturbation theory: Analytically, for the spherical version of the Maier-Saupe 
model [4,7] and numerically, for the original model [ 5 ] .  In this paper the full range 
of the coupling constants is investigated (without the use of perturbation theory) for 
the original model. 

Before proceeding, we would like to point out that, in spite of the fact that both 
the nematic and twist producing term can be interpreted in terms of a multipole 
expansion of the dispersion interaction, and explicit expressions for the coupling 
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Molecular statistical model for  chiral nematics 213 

constants J l j  and Kij can be given, the chosen hamiltonian should be considered to 
represent a phenomenological model, because there is no reason to assume that the 
terms in the expansion, that are not taken into account, can be neglected. 

3. The order parameters 
Because of the cylindrical symmetry of the molecules, assumed in $2, the order 

parameters can only be constructed from the position dependent unit vectors a(r). 
The absence of polarity limits the discussion to tensors of even rank. For simplicity 
we will restrict our attention to the following tensor of second rank 

Lp(r) = (aE(r)afl(r))5 (6) 
where the brackets denote the statistical average. The trace of r is equal to one. 

The chiral nematic phase is further characterized by a helix of wave vector q, 
which can be taken without loss of generality in the x direction. Therefore we can 
express the tensor T(r) in terms of the tensor T(o) 

Tafl(r) = %p (4rx 9 x)%flv (4rx > x)q lv  (o), (7) 
where the matrix %(q$ v) represents a rotation over the angle 4 around the axis v. 

The chosen pair interaction has the lowest energy for two molecules i and j having 
an angle of 45 degrees between their directions a, and a, with the intermolecular 
distance vector r,, being perpendicular to both a, and a,. Thus it is natural to assume 
that the direction x of the helix is compatible with the choice of a locally diagonal r 

I - S + R  0 

0 1 - S - R  0 O 1 
0 0 1 + 2 s  

(8) 

S = - 4  + $(at(o))  (9) 

such that 

and 

The order parameters S and R measure the local nematic order and the biaxiality 
respectively. 

4. The molecular field equations 
It is straightforward to determine the molecular field hamiltonian for the particle 

at the origin 

JA(q) (3s + R)2 
J 
- ( S  - R)(S - R - 2) + - 
8 24 H, = 

JA(q) (3s  + R)(ai(o) - aS(o)), 
35 + - ( S  - R)~$(o)  + - 
4 4 

(1 1) 
where 

J = C Joj 
if0 
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214 B. C. H. Krutzen and G. Vertogen 

and 

Extrema of the Helmholtz free energy per particle, f = - l ip - InZ, where 
Z = 1 du2(o) exp (- bHO) is the partition function, with respect to the parameters S,  
R and the wave number q, can be shown to obey the selfconsistent equations 

i (1  + 2s) = - d2u(o)u~(o)exp(-flHO) (14) Z ' S  
and 

and the wave number equation 

5. The wave number equation 
In order to solve the wave number equation (16) we have to make our model more 

explicit. The summation in the expression (13) for A(q)  can be evaluated by assuming 
random positions for the molecules and introducing a continuous pair distribution 
function g(r). Therefore we replace the summation over a function f ( j ) ,  depending 
on j by way of rOjr by the following integration: 

where e = (3/4n)Rr3 is the density of the system and R, is an intermolecular distance. 
The function g(r) is taken to be 

g(r) = w - ia), (1 8) 
where O(x) is the Heaviside step function. 

In addition to these assumptions the position dependences of J ,  and KO, have to 
be known. Following the analogy between the proposed model hamiltonian and the 
original theory as mentioned in § 2,  we take 

- 

and 

Using the replacement (17) it is straight forward to derive the equalities 

and 
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Molecular statistical model for chiral nematics 215 

Figure 1. The twist angle I+!I over the distance R, as a function of the relative strength K*.  
The dashed curve represents the asymptotic value I+!I = 44.29 degrees where K* goes 
to infinity. 

Now the expression (13) for A(q)  can also be evaluated and gives 

A(q*) = - [q*cos(q*) + ( 5  + K*q*)sin(q*) 

where q* = 2qR, and K* = (8K/9J). With the help of this expression the wave- 
number equation (16) was solved numerically for the full range of the relative 
coupling strength K*. The solutions will be denoted by 4:. In the limit of small K* 
values it can be shown that q$ = f K *  and A(&) = 1 + $(q$)*. In the limit of K* 
going to infinity the solution approaches asymptotically the value q$ = 1.546. The 
twist angle $ over the intermolecular distance R,, $ = R,q, = +q$, is plotted as a 
function of K* in figure 1. 

The limiting value of $, $ = 44.29 degrees for K* going to infinity, can be 
understood by inspection of the twist producing pair interaction. This interaction 
favours angles of 45 degrees between molecules. If more than nearest neighbours are 
taken into account this leads to frustration since there is no way all molecules can 
make angles of 45 degrees with one another. The fact that the limiting value is so close 
to 45 degrees reflects the short range characeter (r,?') of the position dependent 
coupling strength KO. 

6. The selfconsistent equations 
The solution of the selfconsistent equations for S and R has been determined 

numerically for several values of K*. For all cases we find a first order phase 
transition. The results show a qualitative difference for K* < K,*, and K* > K,*, 
where KO* is approximately equal to five. For K* < KO* both S and R are monotonic 
functions of the temperature. For K* > K,* the biaxiality, R, exhibits a maximum for 
some temperature T smaller than the critical temperature T,. The temperature 
dependence of S and R is shown in figure 2 for three representative values of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



216 

\K* = 30.0 
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Figure 2. (a) The order parameter S for the local nematic order as a function of the reduced 

temperature T/Tc for the values K* = 0.1, K* = 6 and K* = 30. The transition values 
for S are S, = 0.429, S, = 0.129 and S, = 0.001 15 respectively. (6)  The order parameter 
R for the biaxiality as a function of the reduced temperature TIT, for the value K* = 0.1. 
The transition value for R is R, = 0.000120. (c) The order parameter R for the biaxiality 
as a function of the reduced temperature T/T,  for the values K* = 6 and K* = 30. The 
transition values for R are R, = 0.0838 and R, = 0.001 15 respectively. 
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K*: K* = 0.1, K* = 6 and K* = 30. For K* = 0.1 the Scurve is very similar to the 
one found for the Maier-Saupe model. The biaxiality parameter R is still very small 
(note the different scales of the plotted R curves for K* = 0.1 and both other values). 
This result is in agreement with the perturbation calculation of Scholte and Vertogen, 
namely the critical value of S changes according to (q,94 and the critical value of R 
is of the order of (q$)2 [4] and is also in agreement with the numerical result of Lin-Liu 
and Lee [5].  For K* = 30 the first order transition is very weak and resembles a 
second order transition as shown by the smallness of the critical values S, and R,. 

7. The case J = 0 
In case only the twist producing term is present the Helmholtz free energy per 

molecule with respect to the isotropic phase,f, appears to depend on the order 
parameter s" = S + R/3 and is given by 

with 

The selfconsistent equation for $and the wave number equation [dK(q)/dq] = 0 have 
to be solved numerically. As expected from the behaviour for K* = 30, the system 
appears to exhibit a second order phase transition. The critical temperature satisfies 
the relation P,K(qO) = 3.750, where qo is the solution of the wavenumber equation. 
It can easily be shown that the wave number equation [dK(q)/dq] = 0 is equivalent 
to the corresponding equation (16) for A ( q )  in the limit of K* going to infinity. Thus, 
the solution of the wave number equation is already known from 95, i.e. we find 
2q,R0 = 1.546. The curves of S and R are nearly identical to those for K* = 30. 
Therefore we do not show them separately. Finally we demonstrate analytically that 
the purely chiral model has a second order phase transition. For this purpose we 
expand the free energy (24) in terms of s" giving 

f = $K(q)[l - ffPK(q)]s"2 + &3P3K4(q)s4 + 0(S6). (26) 
As the term proportional to f4 is positive and thus stabilizes the chiral nematic phase, 
the phase transition is a second order one with a critical temperature determined by 
P,K(qo) = = 3.750, in perfect agreement with the numerical result from the 
previous section. 

8. Conclusion 
The present analysis of the simplest molecular model for the chiral nematic phase 

shows that the biaxiality of this phase must be taken into account even if the pitch is 
large, i.e. from a molecular statistical point of view the chiral nematic phase is always 
biaxial. The temperature dependence of the parameter R, which describes the biaxiality, 
is quite remarkable for relatively strong twist interactions, where it shows a maximum. 
New is the result that the model has a second order phase transition, if the nematic 
term is absent. 

It must be mentioned, that the occurrence of blue phase is neglected here. Such 
phases are found intermediate between the chiral nematic and the isotropic phase for 
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218 B. C .  H. Krutzen and G. Vertogen 

small values of the pitch and can be described indeed by the present model. Finally 
it should be noted that the artefact of a temperature independent pitch can easily be 
removed by the introduction of additional nematic and/or twist producing interactions 
~ ~ 9 1 .  
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